

After completing this chapter, the students will be able to:

- Convert block diagrams to signal-flow graph,
- Find the transfer function of multiple subsystems using Mason's rule,

1. Introduction

For complex control systems, the block diagram reduction technique is difficult. An alternative method for determining the relationship between system variables has been developed by Samuel Jefferson Mason (1953) and is based on a signal flow graph. The block diagram reduction technique requires successive application of fundamental relationships (Cascade, Parallel and/or Canonical) in order to arrive at the system transfer function. On the other hand, Mason's rule for reducing a signalflow graph to a single transfer function requires the application of one formula.
A signal flow graph is a diagram that consists of nodes that are connected by branches. A node is assigned to each variable of interest in the system, and branches are used to relate the different variables. The main advantage for using SFG is that a straight forward procedure is available for finding the transfer function in which it is
not necessary to move pickoff point around or to redraw the system several times as with block diagram manipulations. Moreover, Mason's formula has several components that must be evaluated first.

SFG is a diagram that represents a set of simultaneous linear algebraic equations which describe a system. Let us consider an equation, $y=a x$. It may be represented graphically as,

2. Terminology

Node: A point that denoting a variable or a signal. (e.g. $\mathrm{R}(\mathrm{s}), \mathrm{C}(\mathrm{s}), \mathrm{V}_{1}(\mathrm{~s}), \ldots$)
Branch: A unidirectional path that joining two Nodes. Relation between variables is written next to the directional arrow. (e.g. $\mathrm{G}_{1}(\mathrm{~s}), \mathrm{G}_{2}(\mathrm{~s}), \mathrm{H}_{1}(\mathrm{~s}), \ldots$)

Forward Path: A continuous sequence of branches that can be traversed from input node to the output node without touching any node twice.

$$
\text { e.g. } G_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s}) \mathrm{G}_{3}(\mathrm{~s}) \mathrm{G}_{4}(\mathrm{~s}) \mathrm{G}_{5}(\mathrm{~s}) \mathrm{G}_{7}(\mathrm{~s}) \& \mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s}) \mathrm{G}_{3}(\mathrm{~s}) \mathrm{G}_{4}(\mathrm{~s}) \mathrm{G}_{6}(\mathrm{~s}) \mathrm{G}_{7}(\mathrm{~s})
$$

Loop: A closed path that originates at one node and terminates at the same node.
Along the loop, no node is touched twice.

$$
\text { e.g. } \mathrm{G}_{2}(\mathrm{~s}) \mathrm{H}_{1}(\mathrm{~s}), \mathrm{G}_{4}(\mathrm{~s}) \mathrm{H}_{2}(\mathrm{~s}), \mathrm{G}_{4}(\mathrm{~s}) \mathrm{G}_{5}(\mathrm{~s}) \mathrm{H}_{3}(\mathrm{~s}), \mathrm{G}_{4}(\mathrm{~s}) \mathrm{G}_{6}(\mathrm{~s}) \mathrm{H}_{3}(\mathrm{~s})
$$

Non-Touching Loops: Loops with no common nodes and/or branches
e.g. $\mathrm{G}_{2}(\mathrm{~s}) \mathrm{H}_{1}(\mathrm{~s}) \& \mathrm{G}_{4}(\mathrm{~s}) \mathrm{H}_{2}(\mathrm{~s}), \mathrm{G}_{2}(\mathrm{~s}) \mathrm{H}_{1}(\mathrm{~s}) \& \mathrm{G}_{4}(\mathrm{~s}) \mathrm{G}_{5}(\mathrm{~s}) \mathrm{H}_{3}(\mathrm{~s}), \mathrm{G}_{2}(\mathrm{~s}) \mathrm{H}_{1}(\mathrm{~s}) \& \mathrm{G}_{4}(\mathrm{~s}) \mathrm{G}_{6}(\mathrm{~s}) \mathrm{H}_{3}(\mathrm{~s})$

Input node (Source): node having only outgoing branches (e.g. R(s))

Output node (Sink): node having only incoming branches (e.g. C(s))
Mixed node: A node that has both incoming and outgoing branches. (e.g. $\mathrm{V}_{2}(\mathrm{~s})$)

3. Construction of SFG from D.E.

SFG of a single input system can be constructed from the describing equations:

$$
\begin{aligned}
& x_{2}=a_{12} x_{1}+a_{32} x_{3} \\
& x_{3}=a_{13} x_{1}+a_{23} x_{2}+a_{33} x_{3} \\
& x_{4}=a_{24} x_{4}+a_{34} x_{3}
\end{aligned}
$$

SFG of a multi input system can be constructed from the describing equations:

$$
\begin{aligned}
& X_{1}=a_{11} X_{1}+a_{12} X_{2}+R_{1} \\
& X_{2}=a_{21} X_{1}+a_{22} X_{2}+R_{2}
\end{aligned}
$$

Example (1):

Construct SFG of the system described by the following equations; where R is input \& C is output and $\mathrm{x}_{1}, \mathrm{x}_{2}$, and x_{3} are the system nodes.

$$
\begin{gathered}
x_{1}=R+7 x_{1}+2 x_{2}+5 x_{3} \\
x_{2}=-6 x_{1}+4 x_{2}+8 x_{3} \\
x_{3}=3 x_{1}-9 x_{2}+6 x_{3} \\
C=2 x_{1}+x_{2}+3 x_{3}
\end{gathered}
$$

On the other hand, the signal flow graph can be given and the student is asked to obtain the system equations.

4. SFG from Block Diagram

Example (2):

Draw the DFG from the block diagram given below.

Choose the nodes to represent the variables say $1,2, . .5$ as shown in the block diagram above. Connect the nodes with appropriate gain along the branch. The signal flow graph is shown below.

5. Mason's Formula to Calculate Transfer Function

$$
T . F=\sum_{k=1}^{N} \frac{P_{k} \Delta_{k}}{\Delta}
$$

Where: N is the number of forward paths from input to output
P_{k} is the gain of the $\mathrm{k}^{\text {th }}$ path from input to output
Δ_{k} is the sub-determinant corresponds the $\mathrm{k}^{\text {th }}$ path from input to output
Δ is the main determinant of the control system

The main determinate (Δ) can be calculated as:
$\Delta=1-\sum$ Gain of every loop
$+\sum$ Gain product of every 2 non touching loops
$-\sum$ Gain product of every 3 non touching loops
$+\sum$ Gain product of every 4 non touching loops - ... etc
The sub-determinate $\left(\Delta_{\mathrm{k}}\right)$ can be calculated as:
$\Delta_{k}=1-\sum$ Gain of every loop doesn't touch the path P_{k}
$+\sum$ Gain product of every 2 non touching loops doesn't touch the path P_{k}
$-\sum$ Gain product of every 3 non touching loops doesn't touch the path P_{k}
$+\sum$ Gain product of every 4 non touching loops doesn't touch the path P_{k}

Example (3):

Using Mason's formula, calculate the T.F. $Y(s) / X(s)$

Example (4):

Find the T.F. $Y(s) / X(s)$

Forward Paths =2
$P_{1}=G_{1} G_{2} G_{3} G_{4} \quad ; \quad P_{2}=G_{5} G_{6} G_{7} G_{8}$
Feedback loops
$L_{1}=G_{2} H_{2} ; L_{2}=G_{3} H_{3} ; L_{3}=G_{6} H_{6} ; L_{4}=G_{7} H_{7} ;$
Loops L_{1} and L_{2} do not touch loop L_{3} and L_{4}
$\Delta=1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right)+\left(L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4}\right)$
$\Delta_{1}=1-\left(L_{3}+L_{4}\right) \quad ; \quad \Delta_{2}=1-\left(L_{1}+L_{2}\right)$
$\frac{Y(s)}{R(s)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta}=\frac{G_{1} G_{2} G_{3} G_{4}\left(1-L_{3}-L_{4}\right)+G_{5} G_{6} G_{7} G_{8}\left(1-L_{1}-L_{2}\right)}{1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right)+\left(L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4}\right)}$

Example (5):

Using Mason's Formula, Find the T.F. $Y(s) / X(s)$

$$
\begin{aligned}
& P_{1}=A B ; \quad P_{2}=A \\
& \Delta=1-(-A B C-A B-A) \\
& \Delta=1+A B C+A B+A
\end{aligned}
$$

$$
\Delta_{1}=1 ; \Delta_{2}=1
$$

$$
\frac{Y}{X}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta}=\frac{A(1+B)}{1+A B C+A B+A}
$$

Example (6):

Using Mason's Formula, Find the T.F. $C(s) / R(s)$

In this system there is only one forward path between the input $R(s)$ and the output $C(s)$. The forward path gain is

$$
P_{1}=G_{1} G_{2} G_{3}
$$

we see that there are three individual loops. The gains of these loops are

$$
\begin{aligned}
& L_{1}=G_{1} G_{2} H_{1} \\
& L_{2}=-G_{2} G_{3} H_{2} \\
& L_{3}=-G_{1} G_{2} G_{3}
\end{aligned}
$$

Note that since all three loops have a common branch, there are no non-touching loops. Hence, the determinant Δ is given by

$$
\begin{aligned}
\Delta & =1-\left(L_{1}+L_{2}+L_{3}\right) \\
& =1-G_{1} G_{2} H_{1}+G_{2} G_{3} H_{2}+G_{1} G_{2} G_{3}
\end{aligned}
$$

The cofactor Δ_{1} of the determinant along the forward path connecting the input node and output node is obtained from Δ by removing the loops that touch this path. Since path P_{1} touches all three loops, we obtain

$$
\Delta_{l}=1
$$

Therefore, the overall gain between the input $R(s)$ and the output $C(s)$, or the closedloop transfer function, is given by

$$
\frac{C(s)}{R(s)}=\frac{G_{1} G_{2} G_{3}}{1-G_{1} G_{2} H_{1}+G_{2} G_{3} H_{2}+G_{1} G_{2} G_{3}}
$$

Example (7):

Using Mason's Formula, Find the T.F. $C(s) / R(s)$

$$
\begin{gathered}
\frac{C}{R}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta} \\
=\frac{G_{1} G_{2} G_{3} G_{4}\left(1-G_{7}\right)+G_{1} G_{5} G_{8} G_{4}}{1-\left[G_{1} G_{2} G_{9}+G_{3} G_{4} G_{10}+G_{1} G_{5} G_{8} G_{4} G_{10} G_{9}+G_{5} G_{6}+G_{7}\right]} \\
+\left[G_{1} G_{2} G_{9} G_{7}+G_{3} G_{4} G_{10} G_{5} G_{6}+G_{3} G_{4} G_{10} G_{7}\right]
\end{gathered}
$$

Example (8):

Using Mason's Formula, Find the T.F. $C(s) / R(s)$

In this system, there are three forward paths between the input $R(s)$ and the output $C(s)$. The forward path gains are

$$
\begin{aligned}
& P_{1}=G_{1} G_{2} G_{3} G_{4} G_{5} \\
& P_{2}=G_{1} G_{6} G_{4} G_{5} \\
& P_{3}=G_{1} G_{2} G_{7}
\end{aligned}
$$

There are four individual loops, the gains of these loops are

$$
\begin{aligned}
& L_{1}=-G_{4} H_{1} \\
& L_{2}=-G_{2} G_{7} H_{2} \\
& L_{3}=-G_{6} G_{4} G_{5} H_{2} \\
& L_{4}=-G_{2} G_{3} G_{4} G_{5} H_{2}
\end{aligned}
$$

Loop L_{1} does not touch loop L_{2}; Hence, the determinant Δ is given by

$$
\Delta=1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right)+L_{1} L_{2}
$$

The cofactor Δ_{1}, is obtained from Δ by removing the loops that touch path PI. Therefore, by removing $L_{1}, L_{2}, L_{3}, L_{4}$, and L_{1}, L_{2} from Δ equation, we obtain

$$
\Delta_{l}=\Delta_{2}=1
$$

The cofactor Δ_{3} is obtained by removing L_{2}, L_{3}, L_{4}, and L_{1}, L_{2} from Δ Equation, giving

$$
\Delta_{3}=1-L_{1}
$$

The closed-loop transfer function

$$
\frac{C(s)}{R(s)}=\frac{G_{1} G_{2} G_{3} G_{4} G_{5}+G_{1} G_{6} G_{4} G_{5}+G_{1} G_{2} G_{7}\left(1+G_{4} H_{1}\right)}{1+G_{4} H_{1}+G_{2} G_{7} H_{2}+G_{6} G_{4} G_{5} H_{2}+G_{2} G_{3} G_{4} G_{5} H_{2}+G_{4} H_{1} G_{2} G_{7} H_{2}}
$$

Example (9):

Consider the control system whose signal flow graph is shown below. Determine the system transfer function using Mason's formula.

* There are SIX Forward Paths:
$P_{1}=G_{2} G_{4} G_{6}$
$P_{2}=G_{3} G_{5} G_{7}$
$P_{3}=G_{2} G_{1} \cdot G_{7}$
$P_{4}=G_{3} G_{8} G_{6}$
$P_{5}=-G_{2} G_{1} \cdot H_{2} G_{8} \cdot G_{6}$
$P_{6}=-G_{3} G_{8} H_{1} G_{1} G_{7}$
* There are THREE feedback loops:
$P_{11}=-H_{1} G_{4}$
$P_{21}=-H_{2} G_{5}$
$P_{31}=G_{1} H_{2} G_{8} H_{1}$
* There are $\underline{\mathbf{O N E}}$ combination of two-non-touching feedback loops:
$P_{12}=H_{1} H_{2} G_{4} G_{5}$
$\Delta=1-\left[-H_{1} G_{4}-H_{2} G_{5}+G_{1} H_{2} G_{8} H_{1}\right]+\left[H_{1} H_{2} G_{4} G_{5}\right]$
$=1-G_{1} H_{2} G_{8} H_{1}+H_{2} G_{5}-G_{1} H_{2} G_{8} H_{1}+H_{1} H_{2} G_{4} G_{5}$
$\Delta_{1}=1-\left(-H_{2} G_{5}\right)=1+H_{2} G_{5}$
$\Delta_{2}=1-\left(-H_{1} G_{4}\right)=1+H_{1} G_{4}$
$\Delta_{3}=\Delta_{4}=\Delta_{5}=\Delta_{6}=1$
Using Mason's Formula, the system Transfer Function is:
$T=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}+P_{3} \Delta_{3}+P_{4} \Delta_{4}+P_{5} \Delta_{5}+P_{6} \Delta_{6}}{\Delta}$

Example (10):

For the signal flow graph of a certain control system shown below, find the system characteristic equation.

The characteristic equation obtained from mason's formula is $\Delta=0$
$\Delta=1 \cdot\left(\sum\right.$ all different loop gains)

+ (Σ gain products of all combinations of 2 non-touching loops)
- (\sum gain products of all combinations of 3 non-touching loops)
+ (\sum gain products of all combinations of 4 non-touching loops)

Loop Gains	Two non-touching Loops	Three non-touching Loops
$\begin{aligned} & L_{1}=-G_{2} H_{1} \\ & L_{2}=-G_{3} H_{2} \\ & L_{3}=-G_{4} H_{3} \\ & L_{4}=-G_{7} H_{4} \\ & L_{5}=-G_{8} H_{5} \\ & L_{6}=-G_{9} H_{6} \end{aligned}$	$\begin{aligned} & L_{1} L_{3}=G_{2} G_{4} H_{1} H_{3} \\ & L_{1} L_{4}=G_{2} G_{7} H_{1} H_{4} \\ & L_{1} L_{5}=G_{2} G_{8} H_{1} H_{5} \\ & L_{1} L_{6}=G_{2} G_{9} H_{1} H_{6} \\ & L_{2} L_{4}=G_{3} G_{7} H_{2} H_{4} \\ & L_{2} L_{5}=G_{3} G_{8} H_{2} H_{5} \\ & L_{2} L_{6}=G_{3} G_{9} H_{2} H_{9} \\ & L_{3} L_{4}=G_{4} G_{7} H_{3} H_{4} \\ & L_{3} L_{5}=G_{4} G_{8} H_{3} H_{5} \\ & L_{3} L_{6}=G_{4} G_{9} H_{3} H_{6} \\ & L_{4} L_{6}=G_{7} G_{9} H_{4} H_{6} \end{aligned}$	$\begin{aligned} & L_{1} L_{3} L_{4}=-G_{2} G_{4} G_{7} H_{1} H_{3} H_{4} \\ & L_{1} L_{2} L_{5}=-G_{2} G_{4} G_{8} H_{1} H_{3} H_{5} \\ & L_{1} L_{3} L_{6}=-G_{2} G_{4} G_{9} H_{1} H_{3} H_{6} \\ & L_{1} L_{4} L_{6}=-G_{2} G_{7} G_{9} H_{1} H_{4} H_{6} \\ & L_{2} L_{4} L_{6}=-G_{3} G_{7} G_{9} H_{2} H_{4} H_{6} \\ & L_{3} L_{4} L_{6}=-G_{4} G_{7} G_{9} H_{3} H_{4} H_{6} \end{aligned}$ Four non-touching Loops $L_{1} L_{3} L_{4} L_{6}=G_{2} G_{4} G_{7} G_{9} H_{1} H_{3} H_{4} H_{6}$
$\begin{aligned} \Delta=1-\left\{L_{1}\right. & \left.+L_{2}+L_{3}+L_{4}+L_{5}+L_{6}\right\} \\ & +\left\{L_{1} L_{3}+L_{1} L_{4}+L_{1} L_{5}+L_{1} L_{6}++L_{2} L_{4}+L_{2} L_{5}+L_{2} L_{6}+L_{3} L_{4}\right. \\ & \left.+L_{3} L_{5}+L_{3} L_{6}+L_{4} L_{6}\right\} \\ & -\left\{L_{1} L_{3} L_{4}+L_{1} L_{3} L_{5}+L_{1} L_{3} L_{6}+L_{1} L_{4} L_{6}+L_{2} L_{4} L_{6}+L_{3} L_{4} L_{6}\right\} \\ & +\left\{L_{1} L_{3} L_{4} L_{6}\right\}=0 \end{aligned}$		

Example (11):

Consider the control system whose signal flow graph is shown below. Determine the system transfer function using Mason's formula.

* There are TWO Forward Paths:
$\mathrm{P} 1=\mathrm{G} 1 \mathrm{G} 2 \mathrm{G} 3 \mathrm{G} 4 \mathrm{G} 5$
$\mathrm{P} 2=\mathrm{G} 6$
* There are EIGHT feedback loops:

L1 $=-\mathrm{G} 2 \mathrm{H} 1$
L2 $=-\mathrm{G} 3 \mathrm{H} 2$
$\mathrm{L} 3=-\mathrm{G} 4 \mathrm{H} 3 \quad \mathrm{~L} 4=-\mathrm{G} 2 \mathrm{H} 4$
L5 = - G3H5 L6= - G4H6
$\mathrm{L} 7=-\mathrm{G} 6 \mathrm{H} 7 \quad \mathrm{~L} 8=-\mathrm{G} 1 \mathrm{G} 2 \mathrm{G} 3 \mathrm{G} 4 \mathrm{G} 5 \mathrm{H} 7$

* There are TEN two-non-touching feedback loops:

L1L3 $=$ G2G4H1H3 \quad L1L6 $=$ G2G4H1H6
$\mathrm{L} 1 \mathrm{~L} 7=\mathrm{G} 2 \mathrm{G} 6 \mathrm{H} 1 \mathrm{H} 7$
L2L7 = G3G6H2H7
L3L4 = G2G4H3H4
L3L7 = G4G6H3H7
L4L6 = G2G4H4H6
L4L7 = G2G6H4H7
L5L7 = G3G6H5H7
L6L7 = G4G6H6H7

* There are FOUR three-non-touching feedback loops:
L1L3L7 = - G2G4G6 H1H3H7
L1L6L7 = - G2G4G6H1H6H7
$\mathrm{L} 3 \mathrm{~L} 4 \mathrm{~L} 7=-\mathrm{G} 2 \mathrm{G} 4 \mathrm{G} 6 \mathrm{H} 3 \mathrm{H} 4 \mathrm{H} 7 \quad \mathrm{~L} 4 \mathrm{~L} 6 \mathrm{~L} 7=-\mathrm{G} 2 \mathrm{G} 4 \mathrm{G} 6 \mathrm{H} 4 \mathrm{H} 6 \mathrm{H} 7$
$\Delta=1+\{\mathrm{G} 2 \mathrm{H} 1+\mathrm{G} 3 \mathrm{H} 2+\mathrm{G} 4 \mathrm{H} 3+\mathrm{G} 2 \mathrm{H} 4+\mathrm{G} 3 \mathrm{H} 5+\mathrm{G} 4 \mathrm{H} 6+\mathrm{G} 6 \mathrm{H} 7+\mathrm{G} 1 \mathrm{G} 2 \mathrm{G} 3 \mathrm{G} 4 \mathrm{G} 5 \mathrm{H} 7\}+\{$ G2G4H1H3+G2G4H1H6+G2G6H1H7+G3G6H2H7+G2G4H3H4+G4G6H3H7+ G2G4H4H6+G2G6H4H7+G3G6H5H7+G4G6H6H7 \}+\{ G2G4G6H1H3H7+ G2G4G6H1H6H7+G2G4G6H3H4H7+G2G4G6H4H6H7\}
$\Delta 1=1$
$\Delta 2=1+\{\mathrm{G} 2 \mathrm{H} 1+\mathrm{G} 3 \mathrm{H} 2+\mathrm{G} 4 \mathrm{H} 3+\mathrm{G} 2 \mathrm{H} 4+\mathrm{G} 3 \mathrm{H} 5+\mathrm{G} 4 \mathrm{H} 6\}+\{\mathrm{G} 2 \mathrm{G} 4 \mathrm{H} 1 \mathrm{H} 3+\mathrm{G} 2 \mathrm{G} 4 \mathrm{H} 1 \mathrm{H} 6$ +G2G4H3H4+ G2G4H4H6\}

Using Mason's Formula, the system Transfer Function is:
$\frac{Y(S)}{R(S)}$

$=\frac{\mathrm{G}}{1+\{\mathrm{H} 1+\mathrm{G} 3 \mathrm{H} 2+\mathrm{G} 4 \mathrm{H} 3+\mathrm{G} 2 \mathrm{H} 4+\mathrm{G} 3 \mathrm{H} 5+\mathrm{G} 4 \mathrm{H} 6+\mathrm{G} 6 \mathrm{H} 7+\mathrm{G} 1 \mathrm{G} 2 \mathrm{G} 3 \mathrm{G} 4 \mathrm{G} 5 \mathrm{H} 7\}+\{\mathrm{G} 2 \mathrm{G} 4 \mathrm{H} 1 \mathrm{H} 3+\mathrm{G} 2 \mathrm{G} 4 \mathrm{H} 1 \mathrm{H} 6+\mathrm{G} 2 \mathrm{G} 6 \mathrm{H} 1 \mathrm{H} 7+\mathrm{G} 3 \mathrm{G} 6 \mathrm{H} 2 \mathrm{H} 7+\mathrm{G} 2 \mathrm{G} 4 \mathrm{H} 3 \mathrm{H} 4+}$
$\mathrm{G} 4 \mathrm{G} 6 \mathrm{H} 3 \mathrm{H} 7+\mathrm{G} 2 \mathrm{G} 4 \mathrm{H} 4 \mathrm{H} 6+\mathrm{G} 2 \mathrm{G} 6 \mathrm{H} 4 \mathrm{H} 7+\mathrm{G} 3 \mathrm{G} 6 \mathrm{H} 5 \mathrm{H} 7+\mathrm{G} 4 \mathrm{G} 6 \mathrm{H} 6 \mathrm{H} 7\}+\{\mathrm{G} 2 \mathrm{G} 4 \mathrm{G} 6 \mathrm{H} 1 \mathrm{H} 3 \mathrm{H} 7+\mathrm{G} 2 \mathrm{G} 4 \mathrm{G} 6 \mathrm{H} 1 \mathrm{H} 6 \mathrm{H} 7+\mathrm{G} 2 \mathrm{G} 4 \mathrm{G} 6 \mathrm{H} 3 \mathrm{H} 4 \mathrm{H} 7+\mathrm{G} 2 \mathrm{G} 4 \mathrm{G} 6 \mathrm{H} 4 \mathrm{H} 6 \mathrm{H} 7\}$

Example (12):

For the control system whose signal flow graph is shown below, using Mason's formula, find the system transfer function $\mathrm{Y}(\mathrm{s}) / \mathrm{R}(\mathrm{s})$.

Forward paths

$\mathrm{P}_{1}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4}$
$\mathrm{P}_{3}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{9}$
$\mathrm{P}_{5}=\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{5}$
$\mathrm{P}_{2}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{5}$
$\mathrm{P}_{4}=\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{3} \mathrm{G}_{4}$
$\mathrm{P}_{6}=\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{9}$

Feedback Loops:

$\mathrm{L}_{1}=-\mathrm{G}_{6} \mathrm{H}_{3}$
$\mathrm{L}_{2}=-\mathrm{G}_{8} \mathrm{H}_{4}$
$\mathrm{L}_{3}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{1}$
$\mathrm{L}_{4}=-\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{H}_{1}$
$\mathrm{L}_{5}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{H}_{2}$
$\mathrm{L}_{6}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{5} \mathrm{H}_{2}$
$\mathrm{L}_{7}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{9} \mathrm{H}_{2}$
$\mathrm{L}_{8}=-\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{H}_{2}$
$\mathrm{L}_{9}=-\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{5} \mathrm{H}_{2}$
$\mathrm{L}_{10}=-\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{9} \mathrm{H}_{2}$

Two non-touching Feedback Loops:
$\mathrm{L}_{1} \mathrm{~L}_{2}=\mathrm{G}_{6} \mathrm{G}_{8} \mathrm{H}_{3} \mathrm{H}_{4}$
$\Delta_{1}=\Delta_{2}=\Delta_{3}=\Delta_{4}=\Delta_{5}=\Delta_{6}=1$

Dr. Ahmed Mustafa Hussein

$$
\begin{gathered}
\Delta=1+\left\{\mathrm{G}_{6} \mathrm{H}_{3}+\mathrm{G}_{8} \mathrm{H}_{4}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{1}+\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{H}_{1}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{H}_{2}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{5} \mathrm{H}_{2}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{9} \mathrm{H}_{2}+\right. \\
\left.\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{H}_{2}+\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{5} \mathrm{H}_{2}+\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{9} \mathrm{H}_{2}\right\}+\mathrm{G}_{6} \mathrm{G}_{8} \mathrm{H}_{3} \mathrm{H}_{4}
\end{gathered}
$$

$$
\frac{Y(S)}{R(S)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}+P_{3} \Delta_{3}+P_{4} \Delta_{4}+P_{5} \Delta_{5}+P_{6} \Delta_{6}}{\Delta}
$$

Example (13):

For the control system whose signal flow graph is shown below, using Mason's formula, find the system transfer function $\mathrm{Y}(\mathrm{s}) / \mathrm{R}(\mathrm{s})$.

Forward Paths:
P1 = G1 G2 G3 G4
P3 $=$ G1 G2 G7 G8
$\mathrm{P} 2=\mathrm{G} 5 \mathrm{G} 6 \mathrm{G} 3 \mathrm{G} 4$
$\mathrm{P} 5=\mathrm{G} 9$

Feedback Loops

L1 $=-$ G5 H3
$\mathrm{L} 2=-\mathrm{G} 7 \mathrm{H} 4$
L3 $=-\mathrm{G} 1 \mathrm{G} 2 \mathrm{H} 1$
$\mathrm{L} 4=-\mathrm{G} 3 \mathrm{G} 4 \mathrm{H} 2$
L5 = - G5 G6 H1
L6 = - G7 G8 H2
$\mathrm{L} 7=\mathrm{G} 9 \mathrm{H} 2 \mathrm{H} 1$

Two non-touching Loops

L1 L2 $=$ G5 H3 G7 H4
L1 L4 $=$ G5 H3 G3 G4 H2
L1 L6 = G5 H3 G7 G8 H2
$\Delta 1=\Delta 2=\Delta 3=\Delta 4=1$
$\Delta 5=1+$ G7 H4
$\Delta=1-\{\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{L} 4+\mathrm{L} 5+\mathrm{L} 6+\mathrm{L} 7\}+\{\mathrm{L} 1 \mathrm{~L} 2+\mathrm{L} 1 \mathrm{~L} 4+\mathrm{L} 1 \mathrm{~L} 6\}$
Using Mason's formula

$$
\frac{C(S)}{R(S)}=\frac{P 1 \Delta 1+P 2 \Delta 2+P 3 \Delta 3+P 4 \Delta 4+P 5 \Delta 5}{\Delta}
$$

Example (14):

For the control system whose signal flow graph is shown in Fig. 1, using Mason's formula, find the system transfer function.

Forward paths:
P1 = G1 G2 G3 G4
$\mathrm{P} 2=\mathrm{G} 7 \mathrm{G} 6$
P3 = G1 G2 G6
$\mathrm{P} 4=\mathrm{G} 7 \mathrm{G} 3 \mathrm{G} 4$

Feedback Loops:
L1 $=-$ G1 H1
L6 $=$ G6 H3 H4
L2 $=-\mathrm{G} 2 \mathrm{H} 2$
$\mathrm{L} 7=\mathrm{G} 7 \mathrm{H} 1 \mathrm{H} 2$
L3 $=-$ G3 H3
L8 = - G1 G2 G3 G4 H6 H5 H7
L4 $=-$ G4 H4
L9 $=-$ G7 G6 H6 H5 H7
L5 $=-$ G5 H5
L10 $=-\mathrm{G} 1$ G2 G6 H6 H5 H7
L11 $=-$ G7 G3 G4 H6 H5 H7
Two non-touching feedback loops:
L1L3 $=$ G1 G3 H1 H3
L2L5 $=$ G2 G5 H2 H5
L1L4 $=$ G1 G4 H1 H4
L3L5 = G3 G5 H3 H5
L1L5 = G1 G5 H1 H5
L4L5 = G4 G5 H4 H5
L1 L6 $=-$ G1 G6 H1 H3 H4
L4L7 $=-\mathrm{G} 4$ G7 H4 H1 H2
L2L4 $=$ G2 G4 H2 H4 L5 L6 = - G5 G6 H5 H3 H4
L5L7 $=-$ G5 G7 H5 H1 H2

Three non-touching feedback loops:

L1L3L5 $=-$ G1 G3 G5 H1 H3 H5
L1L5L6 = G1 G5 G6 H1 H5 H3 H4 L4L5L7 = G4 G5 G7 H4 H5 H1 H2

L1L4L5 = - G1 G4 G5 H1 H4 H5
L2L4L5 = - G2 G4 G5 H2 H4 H5

$$
\begin{aligned}
\Delta=1- & \{\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{L} 4+\mathrm{L} 5+\mathrm{L} 6+\mathrm{L} 7+\mathrm{L} 8+\mathrm{L} 9+\mathrm{L} 10+\mathrm{L} 11\}+\{\mathrm{L} 1 \mathrm{~L} 3+ \\
& \text { L1L4 + L1L5 + L1L6 + L2L4 + L2L5 + L3L5 + L4L5 + L4L7 + L5L6 + } \\
& \text { L5L7 }\}-\{\text { L1L3L5 + L1L4L5 + L1L5L6 + L2L4L5 + L4L5L7 \} }
\end{aligned}
$$

$\Delta 1=\Delta 2=\Delta 3=\Delta 4=1-\{$ L5 $\}=1+$ G5 H5
The system transfer function is obtained by Mason's formula as follows:
$\mathrm{Y}(\mathrm{S}) / \mathrm{R}(\mathrm{S})=\{\mathrm{P} 1 \Delta 1+\mathrm{P} 2 \Delta 2+\mathrm{P} 3 \Delta 3+\mathrm{P} 4 \Delta 4\} / \Delta$

Example (15):

For the control system whose signal flow graph is shown below, using Mason's formula, find the system transfer function $\mathrm{Y}(\mathrm{s}) / \mathrm{R}(\mathrm{s})$.

Forward paths
$\mathrm{P}_{1}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4}$
$\mathrm{P}_{2}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{5}$
$\mathrm{P}_{3}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{9}$
$\mathrm{P}_{4}=\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{3} \mathrm{G}_{4}$
$\mathrm{P}_{5}=\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{5}$
$\mathrm{P}_{6}=\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{9}$
Feedback Loops:
$\mathrm{L}_{1}=-\mathrm{G}_{6} \mathrm{H}_{3}$
$\mathrm{L}_{2}=-\mathrm{G}_{8} \mathrm{H}_{4}$
$\mathrm{L}_{3}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{1}$
$\mathrm{L}_{4}=-\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{H}_{1}$
$\mathrm{L}_{5}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{H}_{2}$
$\mathrm{L}_{6}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{5} \mathrm{H}_{2}$
$\mathrm{L}_{7}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{9} \mathrm{H}_{2}$
$\mathrm{L}_{8}=-\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{H}_{2}$
$\mathrm{L}_{9}=-\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{5} \mathrm{H}_{2}$
Two non-touching Feedback Loops:
$\mathrm{L}_{1} \mathrm{~L}_{2}=\mathrm{G}_{6} \mathrm{G}_{8} \mathrm{H}_{3} \mathrm{H}_{4}$
$\Delta_{1}=\Delta_{2}=\Delta_{3}=\Delta_{4}=\Delta_{5}=\Delta_{6}=1$
$\Delta=1+\left\{\mathrm{G}_{6} \mathrm{H}_{3}+\mathrm{G}_{8} \mathrm{H}_{4}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{1}+\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{H}_{1}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{H}_{2}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{5} \mathrm{H}_{2}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{9} \mathrm{H}_{2}+\right.$
$\left.\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{H}_{2}+\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{5} \mathrm{H}_{2}+\mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8} \mathrm{G}_{9} \mathrm{H}_{2}\right\}+\mathrm{G}_{6} \mathrm{G}_{8} \mathrm{H}_{3} \mathrm{H}_{4}$

$$
\frac{Y(S)}{R(S)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}+P_{3} \Delta_{3}+P_{4} \Delta_{4}+P_{5} \Delta_{5}+P_{6} \Delta_{6}}{\Delta}
$$

Example (16):

Using Mason's formula, find the transfer function of the control system shown below.

* There are THREE Forward Paths:
$\mathrm{P}_{1}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4}$,
$\mathrm{P}_{2}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{5}$,
$P_{3}=G_{6}$,
* There are ELEVEN feedback loops:
$\mathrm{L}_{1}=-\mathrm{G}_{1} \mathrm{H}_{1} ; \quad \mathrm{L}_{2}=-\mathrm{G}_{2} \mathrm{H}_{2}$;
$\mathrm{L}_{3}=-\mathrm{G}_{3} \mathrm{H}_{3} ; \quad \mathrm{L}_{4}=-\mathrm{G}_{4} \mathrm{H}_{4}$;
$\mathrm{L}_{5}=\mathrm{G}_{5} \mathrm{H}_{4} \mathrm{H}_{1} ; \quad \mathrm{L}_{6}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{6}$;
$\mathrm{L}_{7}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{H}_{5} ; \quad \mathrm{L}_{8}=-\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{5} \mathrm{H}_{5} ;$
$\mathrm{L}_{9}=-\mathrm{G}_{6} \mathrm{H}_{5} ; \quad \mathrm{L}_{10}=-\mathrm{G}_{6} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{6} ;$
$\mathrm{L}_{11}=\mathrm{G}_{6} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{2} \mathrm{H}_{1}$;
* There are SEVEN combination of two-non-touching feedback loops:
$\mathrm{L}_{1} \mathrm{~L}_{3}=\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{3} \mathrm{H}_{3}$
$\mathrm{L}_{1} \mathrm{~L}_{4}=\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{4} \mathrm{H}_{4}$
$\mathrm{L}_{1} \mathrm{~L}_{5}=-\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{5} \mathrm{H}_{4} \mathrm{H}_{1}$
$\mathrm{L}_{2} \mathrm{~L}_{4}=\mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{4} \mathrm{H}_{4}$
$\mathrm{L}_{2} \mathrm{~L}_{9}=\mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{6} \mathrm{H}_{5}$
$\mathrm{L}_{3} \mathrm{~L}_{9}=\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{6} \mathrm{H}_{5}$
$\mathrm{L}_{4} \mathrm{~L}_{6}=\mathrm{G}_{4} \mathrm{H}_{4} \mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{6}$
$\Delta 1=\Delta 2=1$
$\Delta 3=1-\left[\mathrm{L}_{2}+\mathrm{L}_{3}\right]=1+\mathrm{G}_{2} \mathrm{H}_{2}+\mathrm{G}_{3} \mathrm{H}_{3}$
$\Delta=1-\left\{\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\ldots+\mathrm{L}_{11}\right\}+\left\{\mathrm{L}_{1} \mathrm{~L}_{3}+\mathrm{L}_{1} \mathrm{~L}_{4}+\mathrm{L}_{1} \mathrm{~L}_{5}+\ldots+\mathrm{L}_{4} \mathrm{~L}_{6}\right\}$
Using Mason's Formula, the system Transfer Function is:

$$
\frac{Y(S)}{R(S)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}+P_{3} \Delta_{3}}{\Delta}
$$

Example (17):
Consider the control system shown below, draw the corresponding signal flow graph, and obtain the closed-loop transfer function using Mason's gain formula.

Forward path (2paths)

$$
\begin{aligned}
& P_{1}=G_{1} G_{2} G_{3} G_{4} \\
& P_{2}=G_{5} G_{6} G_{7} G_{8}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { Loops }}{L}(4 \text { loops) } \\
& L_{1} H_{2} \\
& L_{2}=G_{3} H_{3} \\
& L_{3}=G_{6} H_{6} \\
& L_{4}=G_{7} H_{7}
\end{aligned}
$$

two nontouching Loops
$L_{1} L_{2}=G_{2} G_{3} H_{2} H_{3}$
$L_{1} L_{3}=G_{2} G_{6} H_{2} H_{6}$
$L_{1} L_{4}=G_{2} G_{7} H_{2} H_{7}$
$L_{2} L_{3}=G_{3} G_{6} H_{3} H_{6}$
$L_{2} L_{4}=G_{3} G_{7} H_{3} H_{7}$
$L_{3} L_{4}=G_{6} G_{7} H_{6} H_{7}$
three nontouching Loops
$L_{1} L_{2} L_{3}=G_{2} G_{3} G_{6} H_{2} H_{3} H_{6}$
$L_{1} L_{2} L_{4}=G_{2} G_{3} G_{7} H_{2} H_{3} H_{7}$
$L_{3} L_{4}=G_{2} G_{6} G_{7} H_{2} H_{6} H_{7}$
$L_{2} L_{3} L_{4}=G_{3} G_{6} G_{7} H_{3} H_{6} H_{7}$
four non-tonching Loops
$L_{1} L_{2} L_{3} L_{4}=G_{2} G_{3} G_{6} G_{7} H_{2} H_{3} H_{6} H_{7}$

* (b)
$\Delta_{1}=1-\left[G_{6} H_{6}+G_{7} H_{7}\right]+\left[G_{6} G_{7} H_{6} H_{7}\right]$
$\Delta_{2}=1-\left[G_{2} H_{2}+G_{3} H_{3}\right]+\left[G_{2} G_{3} H_{2} H_{3}\right]$
$\Delta=1-\left[G_{2} H_{2}+G_{3} H_{3}+G_{6} H_{6}+G_{7} H_{7}\right]+\left[G_{2} G_{3} H_{2} H_{3}+G_{2} G_{6} H_{2} H_{6}+\right.$
$\left.G_{2} G_{7} H_{2} H_{7}+G_{3} G_{6} H_{3} H_{6}+G_{3} G_{7} H_{3} H_{7}+G_{6} G_{7} H_{6} H_{7}\right]-\left[G_{2} G_{3} G_{6} H_{2} H_{3} H_{6}\right.$
$\left.+G_{2} G_{3} G_{7} H_{2} H_{3} H_{7}+G_{2} G_{6} G_{7} H_{2} H_{6} H_{7}+G_{3} G_{6} G_{7} H_{3} H_{6} H_{7}\right]+[$ $\left.\mathrm{G}_{2} \mathrm{G}_{3} G_{6} G_{7} H_{2} H_{3} H_{6} H_{7}\right]$
$\frac{C(s)}{R(s)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta}$
$=G_{1} G_{2} G_{3} G_{4}\left\{1-\left(G_{6} H_{6}+G_{7} H_{7}\right)+G_{6} G_{7} H_{6} H_{7}\right\}+G_{5} G_{6} G_{7} G_{8}\left\{\begin{array}{r}\left.+G_{2} G_{3} H_{2} H_{3}\right\} \\ 1-\left(G_{2} H_{2}+G_{3} H_{3}\right)\end{array}\right.$

Example (18):

Forward paths:
$\mathrm{P}_{1}=$ ABCDEFGHIJ $=7 \times 2 \times-5 \times-4=280$
$\mathrm{P}_{2}=\mathrm{ABCDEFIJ}=7 \times 2 \times 6=84$
$\mathrm{P}_{3}=\mathrm{ABEFGHIJ}=5 \times-5 \times-4=100$
$\mathrm{P}_{4}=\mathrm{ABEFIJ}=5 \times 6=30$
$\mathrm{P}_{5}=\mathrm{ABGHIJ}=2 \times-4=-8$
$\mathrm{P}_{6}=\mathrm{ABCDIJ}=7 \times 9=63$
$\mathrm{P}_{7}=\mathrm{ABGHCDIJ}=2 \times 9=18$
$\mathrm{P}_{8}=\mathrm{ABGHCDEFIJ}=2 \times 2 \times 6=24$
$\mathrm{P}_{9}=\mathrm{ABGHEFIJ}=2 \times-6 \times 6=-72$
$\mathrm{P}_{10}=\mathrm{ABEFCDIJ}=5 \times-3 \times 9=-135$
$\mathrm{P}_{11}=\mathrm{ABEFGHCDIJ}=5 \times-5 \times 9=-225$
$\mathrm{P}_{12}=\mathrm{ABGHEFCDIJ}=2 \times-6 \times-3 \times 9=324$ Loops:
$\mathrm{L}_{1}=\mathrm{CDC}=-4 \quad \mathrm{~L}_{2}=\mathrm{EFE}=-2$
$\mathrm{L}_{3}=\mathrm{GHG}=2$
$\mathrm{L}_{4}=\mathrm{CDEFC}=2 \times-3=-6$
$\mathrm{L}_{5}=\mathrm{EFGHE}=-5 \times-6=30 \quad \mathrm{~L}_{6}=\mathrm{CDEFGHC}=2 \times-5=-10$
Two Non-touching Loops:
$L_{1} L_{2}=-4 \times-2=8$
$\mathrm{L}_{1} \mathrm{~L}_{3}=-4 \times 2=-8$
$\mathrm{L}_{2} \mathrm{~L}_{3}=-2 \times 2=-4$
$L_{1} L_{5}=-4 \times 30=-120$
$\mathrm{L}_{3} \mathrm{~L}_{4}=2 \times-6=-12$
Three Non-touching Loops:
$\mathrm{L}_{1} \mathrm{~L}_{2} \mathrm{~L}_{3}=-4 \times-2 \times 2=16$
$\Delta=1-\{-4-2+2-6+30-10\}+\{8-8-120-4-12\}-\{16\}=-161$
$\Delta 1=1-\{0\}=1$
$\Delta 2=1-\left\{L_{3}\right\}=1-2=-1$
$\Delta 3=1-\left\{\mathrm{L}_{1}\right\}=1+4=5$
$\Delta 4=1-\left\{\mathrm{L}_{1}+\mathrm{L}_{3}\right\}+\left\{\mathrm{L}_{1} \mathrm{~L}_{3}\right\}=1-\{-4+2\}-8=-5$
$\Delta 5=1-\left\{\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{4}\right\}+\left\{\mathrm{L}_{1} \mathrm{~L}_{2}\right\}=1-\{-4-2-6\}+8=21$
$\Delta 6=1-\left\{\mathrm{L}_{2}+\mathrm{L}_{3}+\mathrm{L}_{5}\right\}+\left\{\mathrm{L}_{2} \mathrm{~L}_{3}\right\}=1-\{-2+2+30\}-4=-33$
$\Delta 7=1-\left\{\mathrm{L}_{2}\right\}=1+2=3$
$\Delta 8=1-\{0\}=1$
$\Delta 9=1-\left\{\mathrm{L}_{1}\right\}=1-\{-4\}=5$
$\Delta 10=1-\left\{L_{3}\right\}=1-2=-1$
$\Delta 11=1-\{0\}=1 \quad \Delta 12=1-\{0\}=1$
$\{280 \times 1+84 \times(-1)+100 \times 5+30 \times(-5)+(-8) \times 21+63 \times(-33)+18 \times 3+$

$$
\frac{C(s)}{R(s)}=\frac{24 \times 1-72 \times 5-135 \times(-1)-225 \times}{\frac{C(s)}{R(s)}=\frac{-1749}{-161}=10.8634}
$$

Example (19):

Consider the control system described by the signal flow graph given below.

Obtain the closed-loop transfer function using Mason's gain formula.
In this system, there are three forward paths between the input $R(s)$ and the output $C(s)$. There are FOUR forward path gains which are:
$\mathrm{P}_{1}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{G}_{6}$
$\mathrm{P}_{2}=\mathrm{G}_{1} \mathrm{G}_{7} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{G}_{6}$
$\mathrm{P}_{3}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{8} \mathrm{G}_{6}$
$\mathrm{P}_{4}=\mathrm{G}_{1} \mathrm{G}_{7} \mathrm{H}_{2} \mathrm{G}_{8} \mathrm{G}_{6}$

There are TWELVE individual loops, the gains of these loops are
$\mathrm{L}_{1}=\mathrm{G}_{4} \mathrm{H}_{1}$
$\mathrm{L}_{2}=\mathrm{G}_{3} \mathrm{H}_{2}$
$\mathrm{L}_{3}=\mathrm{G}_{2} \mathrm{H}_{5}$
$\mathrm{L}_{4}=\mathrm{G}_{7} \mathrm{H}_{2} \mathrm{H}_{5}$
$\mathrm{L}_{5}=\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{H}_{4}$
$\mathrm{L}_{6}=\mathrm{G}_{7} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{H}_{4}$
$\mathrm{L}_{7}=\mathrm{G}_{2} \mathrm{G}_{8} \mathrm{H}_{4}$
$\mathrm{L}_{8}=\mathrm{G}_{7} \mathrm{H}_{2} \mathrm{G}_{8} \mathrm{H}_{4}$
$\mathrm{L}_{9}=\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{H}_{3}$
$\mathrm{L}_{10}=\mathrm{G}_{7} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{H}_{3}$
$\mathrm{L}_{11}=\mathrm{G}_{2} \mathrm{G}_{8} \mathrm{H}_{3}$
$\mathrm{L}_{12}=\mathrm{G}_{7} \mathrm{H}_{2} \mathrm{G}_{8} \mathrm{H}_{3}$

There are THREE pairs of non-touching loops, the gains of these loops are
$\mathrm{L}_{1} \mathrm{~L}_{3}=\mathrm{G}_{4} \mathrm{H}_{1} \mathrm{G}_{2} \mathrm{H}_{5}$
$\mathrm{L}_{1} \mathrm{~L}_{7}=\mathrm{G}_{4} \mathrm{H}_{1} \mathrm{G}_{2} \mathrm{G}_{8} \mathrm{H}_{4}$
$\mathrm{L}_{1} \mathrm{~L}_{11}=\mathrm{G}_{4} \mathrm{H}_{1} \mathrm{G}_{2} \mathrm{G}_{8} \mathrm{H}_{3}$

$$
\begin{gathered}
\Delta_{1}=\Delta_{2}=\Delta_{4}=1, \quad \Delta_{3}=1-L_{1} \\
\Delta=1-\left\{L_{1}+\cdots+L_{12}\right\}+\left\{L_{1} L_{3}+L_{1} L_{7}+L_{1} L_{11}\right\} \\
\frac{C(S)}{R(S)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}+P_{3} \Delta_{3}+P_{4} \Delta_{4}}{\Delta}
\end{gathered}
$$

Example (20):

For the control system, whose signal flow graph is shown below, using Mason's formula, find the system transfer function $\mathrm{Y}(\mathrm{s}) / \mathrm{R}(\mathrm{s})$.

forward paths:
$P_{1}=G_{1} G_{2} G_{3} G_{4}$
$P_{2}=G_{1} G_{2} G_{5}$
$\left.\begin{array}{l}P_{3}=G_{1} G_{2} H_{4} G_{9} G_{10} 6 \\ P_{4}=H_{3} G_{7} G_{8} G_{3} G_{4} \\ P_{5}=H_{3} G_{7} G_{8} G_{5} \\ P_{6}=H_{3} G_{7} G_{9}^{8} G_{10}\end{array}\right\}$ paths
feedback loops: (11 loops)
$L_{1}=G_{6} H_{3}$
$L_{2}=\mathrm{G}_{8} \mathrm{H}_{4}$
$L_{3}=G_{10} H_{5}$
$L_{H}=G_{1} G_{2} H_{1}$
$L_{5}=H_{3} G_{7} G_{8} H_{1}$
$L_{6}=G_{1} G_{2} G_{3} G_{4} H_{2}$
$L_{7}=G_{1} G_{2} G_{5} H_{2}$
$L_{8}=G_{1} G_{2} H_{4} G_{9} G_{10} H_{2}$
$L_{9}=H_{3} G_{7} G_{8} G_{3} G_{4} H_{2}$
$L_{10}=H_{3} G_{7} G_{8} G_{5} H_{2}$
$L_{11}=H_{3} G_{7} G_{9} G_{10} H_{2}$
two non-touching loops
$\left.\begin{array}{l}L_{1} L_{2} \\ L_{1} L_{3} \\ L_{2} L_{3} \\ L_{3} L_{4} \\ L_{3} L_{5}\end{array}\right\} \quad 5$ pairs
three non-touching loops

$$
\begin{gathered}
L_{1} L_{2} L_{3} \\
\Delta_{1}=\Delta_{2}=\Delta_{3}=\Delta_{4}=\Delta_{5}=\Delta_{6}=1 \\
\Delta=1-\left[L_{1}+L_{2}+\cdots+L_{11}\right]+\left[L_{1} L_{2}+L_{1} L_{3}+L_{2} L_{3}+L_{3} L_{4}+L_{3} L_{5}\right] \\
-\left[L_{1} L_{2} L_{3}\right] \\
T \cdot F=\frac{\gamma(S)}{R(S)}=\frac{P_{1}+P_{2}+P_{3}+P_{4}+P_{5}+P_{6}}{\Delta}
\end{gathered}
$$

Example (21):

For the signal flow graph of a control system shown below, using Mason's formula, find the system transfer function and the system characteristic equation.

* There are FOUR Forward Paths:
$\mathrm{P}_{1}=\mathrm{G}_{7}$
$\mathrm{P}_{2}=\mathrm{G} 1 \mathrm{G} 2 \mathrm{G} 3 \mathrm{G} 4$
$\mathrm{P}_{3}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{6} \mathrm{G}_{5}$
$\mathrm{P}_{4}=\mathrm{G}_{8} \mathrm{G}_{5}$
* There are TWENTY ONE feedback loops:
$\mathrm{L}_{1}=\mathrm{G}_{1} \mathrm{H}_{1} ; \quad \mathrm{L}_{2}=\mathrm{G}_{2} \mathrm{H}_{2} ;$
$\mathrm{L}_{3}=\mathrm{G}_{3} \mathrm{H}_{3} ; \quad \mathrm{L}_{4}=\mathrm{G}_{4} \mathrm{H}_{4}$;
$\mathrm{L}_{5}=\mathrm{G}_{5} \mathrm{H}_{5} ; \quad \mathrm{L}_{6}=\mathrm{G}_{5} \mathrm{H}_{6} ;$
$\mathrm{L}_{7}=\mathrm{G}_{2} \mathrm{H}_{7} ; \quad \mathrm{L}_{8}=\mathrm{G}_{1} \mathrm{H}_{8} ;$
$\mathrm{L}_{9}=\mathrm{G}_{6} \mathrm{H}_{4} \mathrm{H}_{3} ; \quad \mathrm{L}_{10}=\mathrm{G}_{8} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{7} \mathrm{H}_{8} ;$
$\mathrm{L}_{11}=\mathrm{G}_{8} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{7} \mathrm{H}_{1} ; \quad \mathrm{L}_{12}=\mathrm{G}_{8} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{2} \mathrm{H}_{1} ;$
$\mathrm{L}_{13}=\mathrm{G}_{8} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{2} \mathrm{H}_{8} ; \quad \mathrm{L}_{14}=\mathrm{G}_{7} \mathrm{H}_{5} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{7} \mathrm{H}_{8} ;$
$\mathrm{L}_{15}=\mathrm{G}_{7} \mathrm{H}_{5} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{7} \mathrm{H}_{1} ; \mathrm{L}_{16}=\mathrm{G}_{7} \mathrm{H}_{5} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{2} \mathrm{H}_{1} ;$
$\mathrm{L}_{17}=\mathrm{G}_{7} \mathrm{H}_{5} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{2} \mathrm{H}_{8} ; \mathrm{L}_{18}=\mathrm{G}_{7} \mathrm{H}_{6} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{7} \mathrm{H}_{8} ;$
$\mathrm{L}_{19}=\mathrm{G}_{7} \mathrm{H}_{6} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{7} \mathrm{H}_{1} ; \mathrm{L}_{20}=\mathrm{G}_{7} \mathrm{H}_{6} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{2} \mathrm{H}_{1} ;$
$\mathrm{L}_{21}=\mathrm{G}_{7} \mathrm{H}_{6} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{2} \mathrm{H}_{8} ;$
* There are EIGHTEEN combination of two-non-touching feedback loops:
$\mathrm{L}_{1} \mathrm{~L}_{3}=\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{3} \mathrm{H}_{3}$
$\mathrm{L}_{1} \mathrm{~L}_{4}=\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{4} \mathrm{H}_{4}$
$\mathrm{L}_{1} \mathrm{~L}_{5}=\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{5} \mathrm{H}_{5}$
$\mathrm{L}_{1} \mathrm{~L}_{6}=\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{5} \mathrm{H}_{6}$
$\mathrm{L}_{1} \mathrm{~L}_{9}=\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{6} \mathrm{H}_{4} \mathrm{H}_{3}$
$\mathrm{L}_{2} \mathrm{~L}_{4}=\mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{4} \mathrm{H}_{4}$
$\mathrm{L}_{2} \mathrm{~L}_{5}=\mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{5} \mathrm{H}_{5} \quad \mathrm{~L}_{2} \mathrm{~L}_{6}=\mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{5} \mathrm{H}_{6}$
$\mathrm{L}_{3} \mathrm{~L}_{5}=\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{5} \mathrm{H}_{5} \quad \mathrm{~L}_{3} \mathrm{~L}_{6}=\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{5} \mathrm{H}_{6}$
$\mathrm{L}_{3} \mathrm{~L}_{8}=\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{1} \mathrm{H}_{8}$
$\mathrm{L}_{4} \mathrm{~L}_{7}=\mathrm{G}_{4} \mathrm{H}_{4} \mathrm{G}_{2} \mathrm{H}_{7}$
$\mathrm{L}_{4} \mathrm{~L}_{8}=\mathrm{G}_{4} \mathrm{H}_{4} \mathrm{G}_{1} \mathrm{H}_{8}$
$\mathrm{L}_{5} \mathrm{~L}_{7}=\mathrm{G}_{5} \mathrm{H}_{5} \mathrm{G}_{2} \mathrm{H}_{7}$
$\mathrm{L}_{5} \mathrm{~L}_{8}=\mathrm{G}_{5} \mathrm{H}_{5} \mathrm{G}_{1} \mathrm{H}_{8}$
$\mathrm{L}_{6} \mathrm{~L}_{7}=\mathrm{G}_{5} \mathrm{H}_{6} \mathrm{G}_{2} \mathrm{H}_{7}$
$\mathrm{L}_{6} \mathrm{~L}_{8}=\mathrm{G}_{5} \mathrm{H}_{6} \mathrm{G}_{1} \mathrm{H}_{8}$
$\mathrm{L}_{8} \mathrm{~L}_{9}=\mathrm{G}_{1} \mathrm{H}_{8} \mathrm{G}_{6} \mathrm{H}_{4} \mathrm{H}_{3}$
* There are FOUR combination of three-non-touching feedback loops:

$$
\begin{aligned}
& \mathrm{L}_{1} \mathrm{~L}_{3} \mathrm{~L}_{5}=\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{5} \mathrm{H}_{5} \quad \mathrm{~L}_{1} \mathrm{~L}_{3} \mathrm{~L}_{6}=\mathrm{G}_{1} \mathrm{H}_{1} \mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{5} \mathrm{H}_{6} \\
& \mathrm{~L}_{3} \mathrm{~L}_{5} \mathrm{~L}_{8}=\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{5} \mathrm{H}_{5} \mathrm{G}_{1} \mathrm{H}_{8} \quad \mathrm{~L}_{3} \mathrm{~L}_{6} \mathrm{~L}_{8}=\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{5} \mathrm{H}_{6} \mathrm{G}_{1} \mathrm{H}_{8} \\
& \Delta=1-\left[\mathrm{L}_{1}+\mathrm{L}_{2}+\ldots+\mathrm{L}_{15}\right]-\left[\mathrm{L}_{1} \mathrm{~L}_{3}+\mathrm{L}_{1} \mathrm{~L}_{4}+\ldots+\mathrm{L}_{8} \mathrm{~L}_{9}\right]+\left[\mathrm{L}_{1} \mathrm{~L}_{3} \mathrm{~L}_{5}+\ldots+\mathrm{L}_{3} \mathrm{~L}_{6} \mathrm{~L}_{8}\right] \\
& \Delta 1=1-\left[\mathrm{L}_{2}+\mathrm{L}_{3}+\mathrm{L}_{4}+\mathrm{L}_{7}+\mathrm{L}_{9}\right]+\left[\mathrm{L}_{2} \mathrm{~L}_{4}+\mathrm{L}_{4} \mathrm{~L}_{7}\right] \\
& \Delta 2=\Delta 3=1 \\
& \Delta 4=1-\left[\mathrm{L}_{2}+\mathrm{L}_{3}+\mathrm{L}_{7}\right] \\
& \Delta=1-\left\{\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\ldots+\mathrm{L}_{21}\right\}+\left\{\mathrm{L}_{1} \mathrm{~L}_{3}+\mathrm{L}_{1} \mathrm{~L}_{4}+\mathrm{L}_{1} \mathrm{~L}_{5}+\ldots+\mathrm{L}_{4} \mathrm{~L}_{6}\right\}
\end{aligned}
$$

Using Mason's Formula, the system Transfer Function is:

$$
\frac{Y(S)}{R(S)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}+P_{3} \Delta_{3}+P_{4} \Delta_{4}}{\Delta}
$$

The characteristic equation is:
$\Delta=1-\left[\mathrm{L}_{1}+\mathrm{L}_{2}+\ldots+\mathrm{L}_{15}\right]-\left[\mathrm{L}_{1} \mathrm{~L}_{3}+\mathrm{L}_{1} \mathrm{~L}_{4}+\ldots+\mathrm{L}_{8} \mathrm{~L}_{9}\right]+\left[\mathrm{L}_{1} \mathrm{~L}_{3} \mathrm{~L}_{5}+\ldots+\mathrm{L}_{3} \mathrm{~L}_{6} \mathrm{~L}_{8}\right]=0$

Example (22):

For the signal flow graph of a control system shown below, using Mason's formula, find the system transfer function and the system characteristic equation.

There are SIX forward path gains which are:
$\mathrm{P}_{1}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{5} \mathrm{G}_{6} \mathrm{G}_{9}$

$$
\begin{aligned}
& \mathrm{P}_{2}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{5} \mathrm{G}_{7} \mathrm{G}_{9} \\
& \mathrm{P}_{4}=\mathrm{G}_{1} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{G}_{7} \mathrm{G}_{9} \\
& \mathrm{P}_{6}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{8} \mathrm{G}_{9}
\end{aligned}
$$

$\mathrm{P}_{3}=\mathrm{G}_{1} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{G}_{6} \mathrm{G}_{9}$

$$
\mathrm{P}_{5}=\mathrm{G}_{1} \mathrm{G}_{4} \mathrm{H}_{2} \mathrm{G}_{8} \mathrm{G}_{9}
$$

There are Fifteen individual loops, the gains of these loops are
$\mathrm{L}_{1}=\mathrm{G}_{2} \mathrm{H}_{1}$
$\mathrm{L}_{2}=\mathrm{G}_{3} \mathrm{H}_{2}$
$\mathrm{L}_{3}=\mathrm{G}_{4} \mathrm{H}_{2} \mathrm{H}_{1}$
$\mathrm{L}_{4}=\mathrm{G}_{5} \mathrm{H}_{3}$
$\mathrm{L}_{5}=\mathrm{G}_{6} \mathrm{H}_{4}$
$\mathrm{L}_{6}=\mathrm{G}_{7} \mathrm{H}_{4}$
$\mathrm{L}_{7}=\mathrm{G}_{5} \mathrm{G}_{6} \mathrm{H}_{5}$
$\mathrm{L}_{8}=\mathrm{G}_{5} \mathrm{G}_{7} \mathrm{H}_{5}$
$\mathrm{L}_{9}=\mathrm{G}_{3} \mathrm{G}_{5} \mathrm{G}_{6} \mathrm{H}_{6}$
$\mathrm{L}_{10}=\mathrm{G}_{3} \mathrm{G}_{5} \mathrm{G}_{7} \mathrm{H}_{6}$
$\mathrm{L}_{11}=\mathrm{G}_{8} \mathrm{H}_{6}$
$\mathrm{L}_{12}=\mathrm{G}_{8} \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{2}$
$\mathrm{L}_{13}=\mathrm{G}_{8} \mathrm{H}_{5} \mathrm{H}_{2}$
$\mathrm{L}_{14}=\mathrm{G}_{4} \mathrm{G}_{5} \mathrm{G}_{6} \mathrm{H}_{6} \mathrm{H}_{1}$
$\mathrm{L}_{15}=\mathrm{G}_{4} \mathrm{G}_{5} \mathrm{G}_{7} \mathrm{H}_{6} \mathrm{H}_{1}$

There are Ten pairs of non-touching loops, the gains of these loops are
$\mathrm{L}_{1} \mathrm{~L}_{4}=\mathrm{G}_{2} \mathrm{H}_{1} \mathrm{G}_{5} \mathrm{H}_{3}$
$\mathrm{L}_{1} \mathrm{~L}_{5}=\mathrm{G}_{2} \mathrm{H}_{1} \mathrm{G}_{6} \mathrm{H}_{4}$
$\mathrm{L}_{1} \mathrm{~L}_{6}=\mathrm{G}_{2} \mathrm{H}_{1} \mathrm{G}_{7} \mathrm{H}_{4}$
$\mathrm{L}_{1} \mathrm{~L}_{7}=\mathrm{G}_{2} \mathrm{H}_{1} \mathrm{G}_{5} \mathrm{G}_{6} \mathrm{H}_{5}$
$\mathrm{L}_{1} \mathrm{~L}_{8}=\mathrm{G}_{2} \mathrm{H}_{1} \mathrm{G}_{5} \mathrm{G}_{7} \mathrm{H}_{5}$
$\mathrm{L}_{2} \mathrm{~L}_{5}=\mathrm{G}_{3} \mathrm{H}_{2} \mathrm{G}_{6} \mathrm{H}_{4}$
$\mathrm{L}_{2} \mathrm{~L}_{6}=\mathrm{G}_{3} \mathrm{H}_{2} \mathrm{G}_{7} \mathrm{H}_{4}$
$\mathrm{L}_{3} \mathrm{~L}_{5}=\mathrm{G}_{4} \mathrm{H}_{2} \mathrm{H}_{1} \mathrm{G}_{6} \mathrm{H}_{4}$
$\mathrm{L}_{3} \mathrm{~L}_{6}=\mathrm{G}_{4} \mathrm{H}_{2} \mathrm{H}_{1} \mathrm{G}_{7} \mathrm{H}_{4}$
$\mathrm{L}_{4} \mathrm{~L}_{11}=\mathrm{G}_{5} \mathrm{H}_{3} \mathrm{G}_{8} \mathrm{H}_{6}$
There is only ONE three non-touching loops, the gains of this loops are
$\mathrm{L}_{1} \mathrm{~L}_{4} \mathrm{~L}_{11}=\mathrm{G}_{2} \mathrm{H}_{1} \mathrm{G}_{5} \mathrm{H}_{3} \mathrm{G}_{8} \mathrm{H}_{6}$

$$
\begin{gathered}
\Delta_{1}=\Delta_{2}=\Delta_{3}=\Delta_{4}=\Delta_{5}=1 \\
\Delta_{6}=1-L_{4}=1-L_{4}=1-G_{5} H_{3} \\
\Delta=1-\left\{L_{1}+\cdots+L_{13}\right\}+\left\{L_{1} L_{4}+L_{1} L_{5}+\cdots+L_{4} L_{11}\right\}-\left\{L_{1} L_{4} L_{11}\right\} \\
\frac{C(S)}{R(S)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}+P_{3} \Delta_{3}+P_{4} \Delta_{4}+P_{5} \Delta_{5}+P_{6} \Delta_{6}}{\Delta}
\end{gathered}
$$

Example (23):

For the control system, whose signal flow graph is shown below, using Mason's formula, find the system transfer function $\mathrm{C}(\mathrm{s}) / \mathrm{R}(\mathrm{s})$.

There are SIX forward path gains which are:
$\mathrm{P}_{1}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{G}_{6}$

$$
\begin{aligned}
& \mathrm{P}_{2}=\mathrm{G}_{1} \mathrm{G}_{7} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{G}_{6} \\
& \mathrm{P}_{4}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{8} \mathrm{G}_{6} \\
& \mathrm{P}_{6}=\mathrm{G}_{1} \mathrm{G}_{7} \mathrm{G}_{9} \mathrm{G}_{6}
\end{aligned}
$$

There are Nineteen individual loops, the gains of these loops are
$\mathrm{L}_{1}=\mathrm{G}_{2} \mathrm{H}_{4}$
$\mathrm{L}_{2}=\mathrm{G}_{3} \mathrm{H}_{3}$
$\mathrm{L}_{3}=\mathrm{G}_{4} \mathrm{H}_{2}$
$\mathrm{L}_{4}=\mathrm{G}_{5} \mathrm{H}_{1}$
$\mathrm{L}_{5}=\mathrm{G}_{7} \mathrm{H}_{3} \mathrm{H}_{4}$
$\mathrm{L}_{6}=\mathrm{G}_{8} \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$
$\mathrm{L}_{7}=\mathrm{G}_{9} \mathrm{H}_{1} \mathrm{H}_{2}$
$\mathrm{L}_{9}=\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{H}_{6}$
$\mathrm{L}_{11}=\mathrm{G}_{7} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{H}_{6}$
$\mathrm{L}_{13}=\mathrm{G}_{7} \mathrm{H}_{3} \mathrm{G}_{8} \mathrm{H}_{6}$
$\mathrm{L}_{15}=\mathrm{G}_{2} \mathrm{G}_{8} \mathrm{H}_{6}$
$\mathrm{L}_{17}=\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{9} \mathrm{H}_{6}$
$\mathrm{L}_{19}=\mathrm{G}_{7} \mathrm{G}_{9} \mathrm{H}_{6}$
$\mathrm{L}_{8}=\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{H}_{5}$
$\mathrm{L}_{10}=\mathrm{G}_{7} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{H}_{5}$
$\mathrm{L}_{12}=\mathrm{G}_{7} \mathrm{H}_{3} \mathrm{G}_{8} \mathrm{H}_{5}$
$\mathrm{L}_{14}=\mathrm{G}_{2} \mathrm{G}_{8} \mathrm{H}_{5}$
$\mathrm{L}_{16}=\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{9} \mathrm{H}_{5}$
$\mathrm{L}_{18}=\mathrm{G}_{7} \mathrm{G}_{9} \mathrm{H}_{5}$

There are Seven pairs of non-touching loops, the gains of these loops are
$\mathrm{L}_{1} \mathrm{~L}_{3}=\mathrm{G}_{2} \mathrm{H}_{4} \mathrm{G}_{4} \mathrm{H}_{2}$
$\mathrm{L}_{1} \mathrm{~L}_{4}=\mathrm{G}_{2} \mathrm{H}_{4} \mathrm{G}_{5} \mathrm{H}_{1}$
$\mathrm{L}_{1} \mathrm{~L}_{7}=\mathrm{G}_{2} \mathrm{H}_{4} \mathrm{G}_{9} \mathrm{H}_{1} \mathrm{H}_{2}$
$\mathrm{L}_{2} \mathrm{~L}_{4}=\mathrm{G}_{3} \mathrm{H}_{3} \mathrm{G}_{5} \mathrm{H}_{1}$
$\mathrm{L}_{3} \mathrm{~L}_{14}=\mathrm{G}_{4} \mathrm{H}_{2} \mathrm{G}_{2} \mathrm{G}_{8} \mathrm{H}_{5}$
$\mathrm{L}_{3} \mathrm{~L}_{15}=\mathrm{G}_{4} \mathrm{H}_{2} \mathrm{G}_{2} \mathrm{G}_{8} \mathrm{H}_{6}$
$\mathrm{L}_{4} \mathrm{~L}_{5}=\mathrm{G}_{5} \mathrm{H}_{1} \mathrm{G}_{7} \mathrm{H}_{3} \mathrm{H}_{4}$

$$
\begin{gathered}
\Delta_{1}=\Delta_{2}=\Delta_{3}=\Delta_{5}=\Delta_{6}=1, \quad \Delta_{4}=1-L_{3} \\
\Delta=1-\left\{L_{1}+\cdots+L_{19}\right\}+\left\{L_{1} L_{3}+L_{1} L_{4}+\cdots+L_{3} L_{15}\right\} \\
\frac{C(S)}{R(S)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}+P_{3} \Delta_{3}+P_{4} \Delta_{4}+P_{5} \Delta_{5}+P_{6} \Delta_{6}}{\Delta}
\end{gathered}
$$

Example (24):

Consider the control system described by the signal flow graph given below. Obtain the closed-loop transfer function using Mason's gain formula.

There are FIVE forward path gains which are:
$\mathrm{P}_{1}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{G}_{6} \mathrm{G}_{7}$
$\mathrm{P}_{2}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{11} \mathrm{G}_{7}$
$\mathrm{P}_{3}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{8} \mathrm{G}_{9} \mathrm{G}_{5} \mathrm{G}_{6} \mathrm{G}_{7}$
$\mathrm{P}_{4}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{8} \mathrm{G}_{9} \mathrm{G}_{5} \mathrm{H}_{2} \mathrm{G}_{11} \mathrm{G}_{7}$
$\mathrm{P}_{5}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{8} \mathrm{G}_{10} \mathrm{G}_{7}$

There are SIX individual loops, the gains of these loops are
$\mathrm{L}_{1}=\mathrm{G}_{8} \mathrm{H}_{3}$
$\mathrm{L}_{2}=\mathrm{H}_{4}$
$\mathrm{L}_{3}=\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{1}$
$\mathrm{L}_{4}=\mathrm{G}_{4} \mathrm{G}_{5} \mathrm{H}_{2}$
$\mathrm{L}_{5}=\mathrm{G}_{2} \mathrm{G}_{8} \mathrm{G}_{9} \mathrm{G}_{5} \mathrm{H}_{2} \mathrm{H}_{1}$
$\mathrm{L}_{6}=\mathrm{G}_{5} \mathrm{H}_{5}$

There are SIX pairs of non-touching loops, the gains of these loops are
$\mathrm{L}_{1} \mathrm{~L}_{4}=\mathrm{G}_{8} \mathrm{H}_{3} \mathrm{G}_{4} \mathrm{G}_{5} \mathrm{H}_{2}$
$\mathrm{L}_{1} \mathrm{~L}_{6}=\mathrm{G}_{8} \mathrm{H}_{3} \mathrm{G}_{5} \mathrm{H}_{5}$
$\mathrm{L}_{2} \mathrm{~L}_{3}=\mathrm{H}_{4} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{1}$
$\mathrm{L}_{2} \mathrm{~L}_{4}=\mathrm{H}_{4} \mathrm{G}_{3} \mathrm{G}_{5} \mathrm{H}_{2}$
$\mathrm{L}_{2} \mathrm{~L}_{6}=\mathrm{H}_{4} \mathrm{G}_{5} \mathrm{H}_{5}$
$\mathrm{L}_{3} \mathrm{~L}_{6}=\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{1} \mathrm{G}_{5} \mathrm{H}_{5}$
There is only ONE three non-touching loops, the gains of this loops are $\mathrm{L}_{2} \mathrm{~L}_{3} \mathrm{~L}_{6}=\mathrm{H}_{4} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{1} \mathrm{G}_{5} \mathrm{H}_{5}$

$$
\begin{gathered}
\Delta_{1}=1-L_{2} \\
\Delta_{2}=1-\left\{L_{2}+L_{6}\right\}+\left\{L_{2} L_{6}\right\} \\
\Delta_{3}=\Delta_{4}=1 \\
\Delta_{5}=1-L_{6}-L_{4} \\
\Delta=1-\left\{L_{1}+\cdots+L_{6}\right\}+\left\{L_{1} L_{4}+L_{1} L_{6}+\cdots+L_{3} 6\right\}-\left\{L_{2} L_{3} L_{6}\right\} \\
\frac{C(S)}{R(S)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}+P_{3} \Delta_{3}+P_{4} \Delta_{4}+P_{5} \Delta_{5}}{\Delta}
\end{gathered}
$$

Sheet 3 (Signal Flow Graph)

Problem \#1

Consider the signal flow graph shown below, identify the following:

a) Input node.
b) Output node
c) Self loop.
d) Determine the loop gains of the feedback loops.
e) Determine the path gains of the forward paths

Problem \#2

For the control systems represented by block diagrams shown in figures below, Draw the corresponding signal flow graph (SFG), then using Mason's rule to obtain the system transfer function.
a)

b)

c)

Problem \#3

Using Mason's Rule, find the transfer function for the following SFG's

Dr. Ahmed Mustafa Hussein

f)

References:

[1] Bosch, R. GmbH. Automotive Electrics and Automotive Electronics, 5th ed. John Wiley \& Sons Ltd., UK, 2007.
[2] Franklin, G. F., Powell, J. D., and Emami-Naeini, A. Feedback Control of Dynamic Systems. Addison-Wesley, Reading, MA, 1986.
[3] Dorf, R. C. Modern Control Systems, 5th ed. Addison-Wesley, Reading, MA, 1989.
[4] Nise, N. S. Control System Engineering, 6th ed. John Wiley \& Sons Ltd., UK, 2011.
[5] Ogata, K. Modern Control Engineering, 5th ed ed. Prentice Hall, Upper Saddle River, NJ, 2010.
[6] Kuo, B. C. Automatic Control Systems, 5th ed. Prentice Hall, Upper Saddle River, NJ, 1987.

